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A new model coupling two basic models, the model based on interface tracking method and the two-fluid
model, for simulating gas–liquid two-phase flow is presented. The new model can be used to simulate
complex multiphase flow in which both large-length-scale interface and small-length-scale gas–liquid
interface coexist. By the physical state and the length scale of interface, three phases are divided, includ-
ing the liquid phase, the large-length-scale-interface phase (LSI phase) and the small-length-scale-inter-
face phase (SSI phase). A unified solution framework shared by the two basic models is built, which
makes it convenient to perform the solution process. Based on the unified solution framework, the mod-
ified MCBA–SIMPLE algorithm is employed to solve the Navier–Stokes equations for the proposed model.
A special treatment called ‘‘volume fraction redistribution” is adopted for the special grids containing all
three phases. Another treatment is proposed for the advection of large-length-scale interface when some
portion of SSI phase coalesces into LSI phase. The movement of the large-length-scale interface is evalu-
ated using VOF/PLIC method. The proposed model is equivalent to the two-fluid model in the zone where
only the liquid phase and the SSI phase are present and to the model based on interface tracking method
in the zone where only the liquid phase and the LSI phase are present. The characteristics of the proposed
model are shown by four problems.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Gas–liquid two-phase flow plays an important role in many
natural and industrial processes such as chemical engineering, nu-
clear engineering and multiphase transportation and so on (Wallis,
1969; Ishii and Zuber, 1979). Gas–liquid two-phase flow contains
various flow patterns, which have great influences on hydrody-
namics, heat transfer and mass transfer. Due to the limited under-
standing on the phenomenon of gas–liquid two-phase flow, there
is an urgent need for a better insight into the details of this flow.
Computational fluid dynamics (CFD) is a good tool for simulating
gas–liquid two-phase flow. One of the main merits of CFD is that
it can make an in-depth understanding of the underlying physical
mechanisms. Besides, it can also provide the distributions of flow-
related parameters for engineering applications. The special com-
putational models and methods are usually developed for the indi-
vidual flow pattern of gas–liquid two-phase flow. In this paper,
flow patterns are classified by the length scale of interface, which
differs from the conventional flow pattern classification.

The model based on interface tracking method is one of the ba-
sic two-phase models. This model is suitable for the flows with
ll rights reserved.

: +86 29 82668703.
large-length-scale gas–liquid interface, where the length scale of
interface is usually much larger than that of computational grid
so that the movement and deformation of interface can be taken
into account in numerical simulation. In this model, the interface
tracking method, which keeps the interface sharp and enables
the accurate location of transient interface when interface advects,
is applied in combination with the Navier–Stokes equations.

At present, there are several types of interface tracking meth-
ods. The volume of fluid (VOF) method (Hirt and Nichols, 1981)
and the Level Set method (Sethian, 1998), which employ a static
grid system, are popular in the simulation of two-phase flow with
large-length-scale interface. These two methods have been applied
to a variety of two-phase flow problems (Olsson and Kreiss, 2005;
Zheng et al., 2007). The front tracking methods (Gardner et al.,
1988; Unverdi and Tryggvason, 1992) determine the location of
interface in an explicit way. In these methods, markers are distrib-
uted evenly near the interface, and then are propagated. The mark-
ers may however move close to or apart from each other. Hence,
the redistribution of markers is needed. The marker-and-cell meth-
od (MAC). (Harlow and Welch, 1965) is one of the interface track-
ing methods using Lagrangian approach. Massless particles are
introduced to locate the interface in the Lagrangian manner. For
the Arbitrary Lagrangian Eulerian method (ALE) (Hirt et al., 1974;
Hughes et al., 1981), the interface is considered to be one of the
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boundaries of the grid system and the grids deform as the interface
moves. A good grid moving algorithm is necessary to deal with
moving boundaries.

If the length scale of interface is very small or equivalent to that
of computational grid, where the length scale of interface is smaller
than the minimal length scale needed to locate the interface, the
accurate location of the interface cannot be obtained by the model
based on interface tracking method and the result will lose its
physical meaning. It is obvious that a new approach is necessary.

The two-fluid model (Ishii, 1975) was thus developed for simu-
lating the small-length-scale bubbles, such as bubbly or dispersed
flow. For this flow pattern, the averaged parameters are usually
concerned. In the two-fluid model, each phase has its correspond-
ing set of governing equations, including the continuity equation,
the momentum equations and the energy equation. The averaged
governing equations, not the original ones, are used to solve the
two-phase flow problem. Various averaging methods have been
proposed, such as time averaging, spatial averaging and ensemble
averaging (Drew, 1983; Bruce and Wendroff, 1984; Zhang and
Prosperetti, 1994). The lack of closure relationship is considered
to be the weakness of all the averaged governing equations. How-
ever, it is not an obstacle to the wide application of the two-fluid
model to two-phase flow problems.

Over the past several decades, many progresses have been
made for the model based on interface tracking method and the
two-fluid model, which are two basic models for simulation of
gas–liquid two-phase flow. The two basic models have been devel-
oped for specified flow patterns. The model based on interface
tracking method is suitable for the flow with large-length-scale
interface, and the two-fluid model for the flow with small-
length-scale interface. However, under real gas–liquid flow condi-
tions, the interfaces with various length scales usually coexist. Nei-
ther of the two basic models is enough for real flow conditions.
Obviously, the model for the simulation of real gas–liquid flow
must have all the characteristics of the two basic models. One
choice is to directly couple the two basic models. However, in
the process of coupling, an intrinsic difficulty must be faced, that
is, the solution frameworks for the two basic models are different.
In the model based on interface tracking method, two phases share
one velocity field, which is obtained by solving one set of momen-
tum equations. In the two-fluid model, the velocity fields of two
phases are obtained by solving the respective momentum equa-
tions. Whether the velocity fields are shared or not results in the
difference in solution framework. This just raises an obstacle when
coupling the two models. Besides this, the description of the vol-
ume fraction is another trouble in coupling. The interface tracking
methods are developed specially for sharp interface and less diffu-
sion. However, in the two-fluid model, the solution of volume frac-
tion emphasizes on the effect of averaging. The two different
emphases on volume fraction is also a block needed to be removed
when coupled into one model.

Some researchers have paid attention to these difficulties and
dedicated their efforts to resolve them Anglart and Podowski
(2002) derived a modified two-fluid model for fully developed slug
flow with time averaging in the period of a Taylor bubble moving
through a whole slug cell. A novel time averaging method was
introduced to characterize periodical slug flow, which greatly dif-
fers from conventional averaging methods, such as those men-
tioned above. The corresponding closure relationships were
developed specially for periodic slug flow. However, it is hard to
deal with the flow patterns other than periodic slug flow, such as
the developing slug flow or the flow of a Taylor bubble followed
by a column of small bubbles Cerne et al. (2001) coupled the
VOF method as the interface tracking method with the two-fluid
model. The coupled model has been used for the simulation of
the two-phase flow with the dispersion of the interface. The VOF
method was used in the part of the computational domain where
the grid density allowed interface tracking, while in the part of
the domain where the interface was too dispersed to be described
by the interface tracking algorithms, the two-fluid model was used.
The criterion based on the estimation of the local dispersion of
interface in the cell was constructed to switch the two models. In
the criterion, a dispersion function was introduced to achieve the
switch by comparing its value with a threshold value. However,
the selection of the threshold value had an influence on the accu-
racy of calculation. In their model the coupling of the two models
was realized by switch but not by a uniform framework. In essence,
this model is not a genuine coupled model. Moreover, the charac-
teristics of the gas–liquid two-phase flow have not been included
in their so-called coupled model.

Despite some progresses, it is obvious that there is still a long
way to enable the simulation of real gas–liquid flows. Therefore,
it is an urgent need and a challenging work to develop a new model
for gas–liquid two-phase flow with complex flow patterns where
small and large-length-scale interfaces coexist. In this paper, a
new model is developed by coupling the model based on interface
tracking method and the two-fluid model for simulation of incom-
pressible gas–liquid two-phase flow. The Navier–Stokes equations
are rearranged based on a unified solution framework and are
solved by the MCBA–SIMPLE algorithm. The special treatment
called ‘‘volume fraction redistribution” is employed to deal with
the zones containing both small and large-length-scale interfaces.
Four problems are provided to show the characteristics of the
new coupled model.
2. Conventional models for simulation of two-phase flow

2.1. The model based on interface tracking method

The model based on interface tracking method, in which the
movement of large-length-scale interface is considered, has been
developed to simulate two-phase flow. The interface tracking
methods include VOF, MAC, Level Set, etc., which are developed
specially for the advection of interface. The essence of these meth-
ods is to keep the interface sharp, which allows the accurate loca-
tion of interface and the simulation of surface phenomenon. The
model based on interface tracking method can be used to describe
gas–liquid two-phase problems of some special flow patterns, such
as the stratified flow in horizontal tubes and the slug flow in ver-
tical tubes, etc., where the length scale of gas–liquid interface is
much larger than the grid size. In this model, the two phases share
one set of continuity and momentum equations. For the systems of
incompressible viscous two-phase flow, the following continuity
and momentum equations are usually used (Puckett et al., 1997).

r � U
!
¼ 0

q
@ U
!

@t
þ qr � ðU

!
U
!
Þ ¼ �rpþr � ðlD

!
Þ þM

!
þq~g

ð1Þ

where U
!

is velocity vector, p is pressure, D
!
¼ ðrU

!
þrU

!
T Þ

2 , M
!

represents
momentum exchange term, e.g. surface tension force and ~g is the
gravitational acceleration. The density q and the viscosity l, shared
by the two fluids, are the functions of space and time.

For the interface tracking methods, the advection equation for
interface is employed in the following form (Puckett et al., 1997):

@f
@t
þ U
!
�rf ¼ 0 ð2Þ

where f denotes the indicator of the location of interface, which has
different meanings for different interface tracking methods. The
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indicator f is also used to calculate the fluid properties, e.g., density
and viscosity, at grid points.

q ¼ fq1 þ ð1� f Þq2

l ¼ fl1 þ ð1� f Þl2

ð3Þ

Since the main goal of this paper is to develop the model coupling
the model based on interface tracking method and the two-fluid
model, it is essential to select an appropriate interface tracking
method for the new model.

2.2. The two-fluid model

The two-fluid model is one of the basic numerical models for
multiphase flow. It is usually applied to the two-phase flow such
as bubbly flow or dispersed flow, where the length scale of the
gas–liquid interface is smaller or equivalent to the grid size and
only the averaged effects of physical variables are concerned. In
the model, each phase, which occupies the whole space, is consid-
ered as continuous fluid.

The governing equations of this model pioneered by Wallis
(1969), Drew and Lahey (1982) and Ishii and Mishima (1984) were
derived by averaging the original ones for single phase fluid. There
are several averaging methods including time, space, ensemble
averaging, etc. Two sets of governing equations govern the conser-
vations of mass, momentum, and energy of each phase. The conti-
nuity and momentum equations, developed by Drew and Passman
(1998), for the systems of incompressible fluids in the model are
given by

@

@t
ðakqkÞ þr � ðakqkU

!
kÞ ¼ 0

@ðakqkU
!

kÞ
@t

þr � ðakqkU
!

kU
!

kÞ ¼ �akrpþr � ðaklkDkÞ þM
!

k þ akqk
~g

ð4Þ

where a denotes the volume fraction. The notation k is the phase
indicator with k ¼ 1 for phase 1 and k ¼ 2 for phase 2. Both fluids
share the same space and pressure and have different velocity
fields.

Since the averaged variables of one phase are dependent upon
the other phase, the interactions between phases are embodied
through the source terms of the momentum equations or other
scalar equations. In the process of averaging, some information of
the interactions between phases is lost, which is compensated usu-
ally by more accurate closure relationships provided mostly by
experiments as the source terms. The closure relationships are
the main source of the uncertainty of the two-fluid model.
3. MCBA–Simple algorithm

Darwish et al. (2001) has developed new multiphase flow algo-
rithms, which fully extended the segregated class of algorithms
and many other techniques developed for single-fluid flow to the
simulation of multiphase flow. These algorithms fall in two catego-
ries, i.e., mass conservation-based algorithms (MCBA) and geomet-
ric conservation-based algorithms (GCBA), which depends on that
the mass conservation equation or the geometric conservation
equation is chosen to derive the pressure equation.

MCBA–SIMPLE algorithm (Darwish et al., 2001) is the SIMPLE
algorithm combined with MCBA. The algorithm is very similar to
that of original SIMPLE algorithm. The most significant difference
is the derivation of the pressure-correction equation (see Appendix
A for the detailed derivation process).

Due to limited space, only the solution procedure of MCBA–
SIMPLE (Moukalled et al., 2003) is shown as follows:
(1) Solve the individual momentum equations for velocities.
(2) Solve the pressure correction equation based on global mass

conservation.
(3) Correct velocities and pressure.
(4) Solve the individual mass conservation equations for volume

fractions.
(5) Solve the other scalar equations.
(6) Return to the first step and repeat until convergence.
4. The coupled model

For real flows, large-length-scale bubbles and small-length-
scale bubbles, all relative to grid size, are often present simulta-
neously. Obviously, it is impossible to simulate this kind of flow
only with the model based on interface tracking method or with
the two-fluid model. The only feasible way is to develop a new
method which can simulate the movement of the interfaces with
large length scale and the averaged properties of each phase in dis-
persed flow regions. In other words, the developed model should
contain the advantages of the two basic models. Therefore, the
main work of this paper is to develop a new coupled model which
can simulate the gas–liquid two-phase flow simultaneously con-
taining both small and large-length-scale gas–liquid interfaces.

For the gas–liquid two-phase flow, all fluids, in general, are
physically divided into two phases: the liquid phase and the gas
phase. However, in the coupled model, there are three phases di-
vided not only by the physical state but also by the length scale
of interface, including the liquid phase, the large-length-scale-
interface phase (LSI phase) and the small-length-scale-interface
phase (SSI phase). Here ‘‘large-length-scale-interface” means that
the length scale of interface is much larger than grid size so that
its movement must be considered, and ‘‘small-length-scale-inter-
face” means that the length scale of interface is equivalent to or
smaller than grid size so that accurate location of interface cannot
be obtained in the grid system or that the averaged effects of phys-
ical parameters are concerned in this zone. Corresponding to gas–
liquid two-phase flow, the liquid phase stands for the continuous
liquid, the LSI phase stands for the bubbles with large length scale
interfaces, i.e., large bubbles and the SSI phase stands for the small-
length-scale-interface bubble swarms, e.g., dispersed bubbles,
respectively. The sketch map of practical gas–liquid flow with
the three phases is shown in Fig. 1a.

In the coupled model, the three phases have complicated inter-
actions among them. There are frictional forces on the liquid phase
and the LSI phase, i.e., the large-length-scale interface between li-
quid phase and gas phase, for instance, the frictional force on the
liquid at the interface of liquid and the Taylor bubble in slug flow.
Breakups and coalescences happen between the LSI phase and the
SSI phase. Breakups mean that part of the large bubble near the
interface is forced to shake off from the LSI phase and becomes dis-
persed bubbles due to intensely turbulent disturbances acting on
the liquid near the interface. Oppositely, coalescences happen
when some gas of the SSI phase catches up with the gas of the
LSI phase and enters it. There are also interactions between the li-
quid phase and the SSI phase. The interactions contain more than
one kind of force. In gas–liquid bubbly flow, the interaction con-
sists of drag force, virtual mass force, Basset force, lift force, wall
force, and so on. The interactions between one phase and another
are shown in Fig. 2.
4.1. The equivalence of two basic models

In the model based on interface tracking method, the continuity
and momentum equations for the incompressible viscous gas–li-
quid fluids are shown as Eq. (1).



(a) 

(b) 

Fig. 1. Schematic map of three phases divided in the proposed model.

Fig. 2. Interactions among three phases.
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Assume that there are two phases in the flow system. With the
geometric conservation equation of a1 þ a2 ¼ 1, the continuity
equation in Eq. (1) can be rewritten as

r � ða1 U
!
þa2 U

!
Þ ¼ 0;

then

@

@t
ða1 þ a2Þ þ r � ða1 U

!
þa2 U

!
Þ ¼ 0: ð5Þ

Considering the interface advection equation @ak
@t þ U

!
r � ak ¼ 0,

which will be derived in Section 4.6, the above equation can be
split into two equations as follows:
@a1

@t
þr � ða1 U

!
Þ ¼ 0

@a2

@t
þr � ða2 U

!
Þ ¼ 0:

ð6Þ

For incompressible fluids, the above equations have the same
form as the continuity equation in the two-fluid model. One of
the difference is that the two phases share the same velocity field,
i.e., ~U1 ¼ ~U2 ¼ U

!
.

The momentum equation of the model based on interface track-
ing method in a certain direction, e.g., x-direction, is shown as

q
@U
@t
þ qr � ðU U

!
Þ ¼ � @p

@x
þr � ðlDxÞ þMx þ qgx ð7Þ

where U stands for the x-direction component of the velocity. Intro-
ducing the geometric conservation equation of a1 þ a2 ¼ 1, and the
expressions of the volume fraction weighted averaged density and
dynamic viscosity, q ¼

P
akqk and l ¼

P
aklk, which are also used

in the model based on interface tracking method, Eq. (7) can be
rearranged as

X2

k¼1

akqk
@U
@t
þ akqkr � ðU U

!
Þ

� �
¼
X2

k¼1

�ak
@p
@x
þr � ðaklkD

!
xÞ þ akqkgx

� �
þMx

ð8Þ

Similar to the continuity equation, the above equation can also be
split into two equations as follows:

akqk
@U
@t
þ akqkr � ðU U

!
Þ ¼ �ak

@p
@x
þr � ðaklkD

!
xÞ þ akqkgx þMxk

ð9Þ

where the notation k means the phase k, with the value of 1 or 2 and
Mx ¼

P
Mxk. It is obvious that Eq. (9) is the form of the momentum

equation in the two-fluid model, thought in the non-conservative
form.

Based on the above derivations, the controlling equations of the
model based on interface tracking method can be written in the
following form:

@

@t
ðakqkÞ þ r � ðakqk U

!

k
Þ ¼ 0

akqk
@U
!

k

@t
þ akqkr � ðU

!

k
U
!

kÞ ¼ �akrpþr � ðaklkD
!

kÞ þM
!

k þ akqk
~g

ð10Þ

Obviously, the same form as the two-fluid model has been attained.
In the two-fluid model, the governing equations consist of the

continuity equation and the momentum equations of individual
phase. However, the governing equations only consists of one set
of continuity equation and momentum equations in the model
based on interface tracking method, where the two phases are con-
sidered as one phase, which means that the two phases share the
same velocity field. According to the above derivations, the conti-
nuity equations and the momentum equations for one phase can
be rearranged as the corresponding equations for two phases with
a special case of U

!
k ¼ U

!
. It is also shown that the governing equa-

tions of the model based on interface tracking method are a subset
of those of the two-fluid model. The two models are equivalent to
each other in the case of U

!

k
¼ U
!

, which makes it available to write
the governing equations as a unified form for the coupled model.
As such, it is convenient to construct the solution strategy for the
new model.

4.2. The solution strategy and the unified solution framework

The coupling of the two basic models is a direct way to keep the
advantages of the two models. However, building a unified form of
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the governing equations and a unified solution framework, which
are shared by the two models, is necessary. Meanwhile, dealing
with the special grids containing both the LSI phase and the SSI
phase is also important.

The form of the governing equations of the model based on
interface tracking method is a particular form of the two-fluid
model when the two phases share the same velocity field. Obvi-
ously, the equations for the two models can be solved by the solu-
tion strategy for general two-fluid model, if the governing
equations for the model based on interface tracking method are
written in the form the same as the two-fluid model and each
phase is regarded as a continuous phase occupying the whole do-
main as in the two-fluid model. However, in the coupled model,
the governing equations of three phases are concerned. The de-
tailed solution strategy is covered later.

The MCBA–SIMPLE algorithm is adopted as the basic strategy
when solving with the two-fluid model. As mentioned above, in
this algorithm, the pressure-correction equations are derived not
by continuity equation of single phase but by the sum of continuity
equations of all phases. This algorithm includes two characteris-
tics. One is that this algorithm can easily extend the usual manip-
ulations for two phases to more phases and the other is that many
techniques developed for single phase can be applied to multi-
phase flow. These characteristics can be embedded into the new
model in the process of coupling. This coupling inherits the charac-
teristics of the MCBA–SIMPLE algorithm and makes the new model
capable of dealing with more complex situations such as more than
three phases or groups. All derivations and manipulations as fol-
lows proceed in the framework of this algorithm.

For the grids occupied by the three phases, special treatments
are necessary. For the grids occupied by liquid phase, the solution
is gained only by the algorithm for single phase, and for the grids
occupied by two phases, e.g., liquid phase and LSI or SSI phase,
the model based on interface tracking method or the two-fluid
model is available. However, the coexistence of three phases in
one grid results in more complexities. In the coupled model, a
manipulation called ‘‘volume fraction redistribution” is performed
for the special case. The manipulation is carried out by three steps.
Firstly, transform the real values of the volume fractions of two
phases, e.g., phase 1 and phase 2, so that this grid is occupied by
only the two phases. Secondly, based on the resultant volume frac-
tions of step 1, the related calculations and derivations of physical
variables for solving Navier–Stokes equations for the two phases
are performed. Finally, perform the inverse calculations for volume
fractions so that the volume fractions of the two phases come back
to the real ones. Simultaneously, the physical variables, e.g., the
forces or the momentum exchange terms in momentum equations
calculated in step 2 should also be changed proportionally. The
manipulation of ‘‘volume fraction redistribution” will be extremely
critical for the proposed model, and the detailed procedures of the
implementation will be presented to in the next subsections.

4.3. The governing equations

In the coupled model, all fluids are divided into three phases:
the liquid phase, the LSI phase and the SSI phase. The volume frac-
tion of each phase is denoted by a. The subscript of a refers to one
of these phases (1 for liquid phase, 2 for LSI phase and 3 for SSI
phase) as shown in Fig. 1b.

As mentioned above, in the unified framework of solution strat-
egy, the governing equations of each phase are written in the same
form as those of the two-fluid model, shown as Eq. (10). Here the
phase change is of no consideration.

For the governing equations in new form, solving the momen-
tum equations of phase 1 and phase 2 should achieve the same
velocity field, because the large-length-scale interfaces are formed
by phase 1 and phase 2. However, for the governing equations of
usual two-fluid model, the two phases have different velocity
fields. This is the essential difference between the new governing
equations and those of the usual two-fluid model, though they look
like each other.

4.4. The pressure-correction equations

The following derivations are all for the case in which grids are
occupied by three phases. In this process, the special treatment
called ‘‘volume fraction redistribution” mentioned above is imple-
mented for all grids. Thus, the conclusions are obtained for general
case. The cases in which grids are occupied by one or two phases
can be achieved easily.

Considering the incompressibility of fluids, the continuity equa-
tions of each phase are given by

@ak

@t
þr � ðakU

!
kÞ ¼ 0 ð11Þ

To implement the manipulation of ‘‘volume fraction redistribution”,
the volume fractions of phase 1 and phase 3, a1 and a3, are selected
for transformation. This selection is due to two considerations. One
is that the advection of the large-length-scale interfaces is calcu-
lated with the methods different from those of small-scale inter-
faces. The other is that there are direct interactions between the
liquid phase and the SSI phase.

In the first step of the manipulation, the transformed volume
fractions of the two phases occupy the whole grid, which means
that the sum of the two transformed volume fractions should be
1. If the transformed value U is denoted by U0, then a01 þ a03 ¼ 1.
In view of the physical interactions between the two phases, the
relative ratio of the volume fractions of the two phases should be
maintained. Obviously, the transformation relationships of
a01 ¼ a1=ð1� a2Þ and a03 ¼ a3=ð1� a2Þ satisfy the above two
requirements.

The continuity equations of three phases can be modified as

@a01
@t
þr � ða01U

!
1Þ ¼ 0

@a2

@t
þr � ða2U

!
2Þ ¼ 0

@a03
@t
þr � ða03U

!
3Þ ¼ 0

ð12Þ

Based on the transformed volume fractions, adding the continuity
equations of phase 1 and phase 3 gives

r � ða01U
!

1 þ a03 U
!

3
Þ ¼ 0 ð13Þ

where the identical equation a01 þ a03 ¼ 1 is used.
In the manipulation, the inverse transformation to the original

condition is necessary. Under the original condition, the phase 1
and phase 3 only occupy the portion ð1� a2Þ of the whole grid vol-
ume. If the two phases are regarded as a whole, the contribution of
the volume occupancy of the two phases is calculated by multiply-
ing Eq. (13) with ð1� a2Þ. Then the continuity equations of all
phases are added to yield the overall volume conservation equa-
tion, that is

@a2

@t
þr � ða2

~U2Þ þ ð1� a2Þr � ða01U
!

1 þ a03U
!

3Þ ¼ 0 ð14Þ

The overall volume conservation equation will be employed to de-
rive the pressure-correction equations, which is also implemented
in the MCBA–SIMPLE algorithm.

It should be noted that, in the proposed model, a2 is used to
indicate the accurate location of large-length-scale interface,
although its physical meaning is volume fraction. Thus, special
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interface tracking algorithms, such as VOF method and Level Set
method, should be employed. By denoting the velocity field of
interface advection as U

!
2, the equation used to advect the interface

denoted by a2 is given by

@a2

@t
þ U
!

2 � ra2 ¼ 0 ð15Þ

Subtracting the above equation from the continuity equation of
phase 2 gives r � U

!
2 ¼ 0, which corresponds to the incompressibil-

ity of phase 2 fluid. Subtracting Eq. (15) from the new overall vol-
ume conservation equation yields

a2r � U
!

2 þ ð1� a2Þr � ða01U
!

1 þ a03U
!

3Þ ¼ 0 ð16Þ

which is the equation that can be shared by the two basic models.
Assigning a2 ¼ 0 or 1 corresponds to one of the two basic models,
respectively. When a2 is equal to 1, the above equation is reduced
to r � U

!
2 ¼ 0, which is used in the model based on interface track-

ing method. If a2 is equal to 0, then r � ða01U
!

1 þ a03U
!

3Þ ¼ 0, which is
used for the two-fluid model. However, for the special grid where
all three phases are present, the volume conservation for the phase
2 and the other two phases are usually not guaranteed in the pro-
cess of numerical calculation. The reason is that only one pressure
field is used in the proposed model and that two different pressure
fields are employed in the two basic models. Considering the impor-
tance of the movement of large-length-scale interface and for the
sake of simplicity, the volume conservation of phase 2 is guaranteed
preferentially. If the large-length-scale interface is present in the
grid, r � U

!
2 ¼ 0 is chosen to solve. This choice can cause error in

the zones near interface. However, this choice has less influence
on the other zones. Therefore, the modified overall volume conser-
vation equation is given by

r � U
!

2 ¼ 0;when phase 2 is present in the grid

r � ða01U
!

1 þ a03U
!

3Þ ¼ 0; when phase 2 is absent in the grid

8<
:

ð17Þ

which is the final overall volume conservation equation employed
to derive the pressure-correction equation in the proposed model
within the solution framework of MCBA–SIMPLE algorithm.

The procedure of forming the pressure-correction equation is
the same as that in Appendix A, where the pressure correction field
is related to the velocity correction field. In the process of deriving
the pressure-correction equation, the critical work to do is to sub-
stitute the relationships of the pressure correction field and the
velocity correction field for individual phase into the final overall
volume conservation equation. Through this substitution, the final
overall volume conservation equation can be rearranged as

r� ½ða1þa2ÞD2rp0� ¼r �U
!
�
2;when phase 2 is present in the grid

r� ½ða01a1D2þa03a3D3Þrp0�

¼r � ða01U
!
�
1þa03U

!
�
3Þ;when phase 2 is absent in the grid

8>><
>>:

ð18Þ

where the momentum equations shared by phase 1 and phase 3 are
used, which will be covered later. The notations have been denoted
in Appendix A. After solving Eq. (18), new pressure field and veloc-
ity field can be obtained by Eq. (A.10) of Appendix A.

In this section, the modified continuity equations are employed
in the process of deriving the pressure-correction equation, which
results from the manipulation of ‘‘volume fraction redistribution”.
In the manipulation, the particularity of phase 2 has been taken
into account. Another merit of the derivation is that the derivative
of a2 is not included, which ensures the numerical stability of
calculation.
4.5. The momentum equations

In the general two-fluid model, the velocity fields of each phase
are obtained by solving the momentum equations of the corre-
sponding phase. However, the presence of large scale interface in
a grid makes special treatment required before solving momentum
equations in the coupled model.

In the proposed model, one important characteristic of the
model based on interface tracking method, that is, the two phases
(phase 1 and phase 2) composing large-length-scale interface share
the same velocity field, is embodied in the MCBA–SIMPLE algo-
rithm. Thus, it is available to solve one set of momentum equations
for the two phases.

Considering the principle of the equivalence of the two forms
when sharing the same velocity field, the shared momentum equa-
tions for phase 1 and phase 2 can be obtained. The shared velocity
field is denoted by U

!
m, i.e., U

!
1 ¼ U

!
2 ¼ U

!
m. The momentum equa-

tions of the two phases can be written as

a1q1
@U
!

m

@t
þa1q1r�ðU

!
mU
!

mÞ ¼�a1rpþr� ða1l1D
!

1ÞþM
!

1þa1q1~g

a2q2
@U
!

m

@t
þa2q2r�ðU

!
mU
!

mÞ ¼�a2rpþr� ða2l2D
!

2ÞþM
!

2þa2q2~g

ð19Þ

Adding the two equations gives

qm
@U
!

m

@t
þ qmr � ðU

!
mU
!

mÞ ¼ �ða1 þ a2Þrpþr � ðlmD
!

mÞ

þM
!

m þ qm~g ð20Þ

where qm ¼ a1q1 þ a2q2 and lm ¼ a1l1 þ a2l2 are used. It is noted
that qm is the summation of the macroscopic densities of the two
phases, not the macroscopic densities of all three phases. The two
macroscopic densities are equal when the phase 3 is absent. Simi-
larly the expression ða1 þ a2Þ is equal to ð1� a3Þ and is equal to 1
only when the phase 3 is absent.

Eq. (20) is used to solve the velocity field shared by phase 1 and
phase 2. The velocity fields of phase 3 are obtained by solving its
original momentum equations shown as

a3q3
@U
!

3

@t
þ a3q3r � ðU

!
3U
!

3Þ ¼ �a3rpþr � ða3l3D
!

3Þ þM
!

3 þ a3q3~g

ð21Þ

When all three phases are present in a grid, special treatments for
the shared momentum exchange term M

!
m are needed.

The physical meaning of M
!

m is the external forces acting on the
fluid of phase 1 and phase 2 per unit volume. Based on the practical
situations of gas–liquid two-phase flow, M

!
m includes two parts:

the force induced by the interface between phase 1 and phase 2
per unit volume, e.g., surface tension force and the interactive force
between phase 1 and phase 3 per unit volume, e.g., the drag force,
the lift force, the wall force, etc. The two parts of M

!
m are defined as

M
!

m;L and M
!

m;S, respectively. The manipulation of ‘‘volume fraction
redistribution” is implemented when calculating M

!
m.

For the sake of simplicity, the surface tension force is taken as
an example of M

!
m;L. Here the surface tension force acts only on

phase 1 and phase 2. When the phase 3 is present, the effect of sur-
face tension force should be reduced in proportion to ð1� a3Þ. If
M
!
0
m;L denotes the force induced by interface per unit volume when

only phase 1 and phase 2 are present, then the relationship
M
!

m;L ¼ ð1� a3Þ �M
!
0
m;L is obtained. M

!
m;L can be calculated in three

steps. The first step is to modify the volume fractions of phase 1
and phase 2, assuming that only the two phases are present. The
second step is to calculate M

!
0
m;L. Finally M

!
m;L is obtained using
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the relationship M
!

m;L ¼ ð1� a3Þ �M
!
0
m;L. The essence of these three

steps is to implement ‘‘volume fraction redistribution”. The process
of calculating M

!
m;L is shown in Fig. 3a.

The calculation of M
!

m;S is very similar to that of M
!

m;L. Based on
physics, M

!
m;S acts only on phase 1 and phase 3. Thus, M

!
m;S is pro-

portional to the sum of the volume fractions of the two phases. If
M
!
0
m;S is considered as the force between phase 1 and phase 3 per

unit volume when only phase 1 and phase 3 are present, the rela-
tionship M

!
m;S ¼ ð1� a2Þ �M

!
0
m;S is given. The manipulation of ‘‘vol-

ume fraction redistribution” is implemented to calculate M
!

m;L.
Firstly, modify the volume fractions of phase 1 and phase 2, assum-
ing that only the two phases are present. Then M

!
0
m;S is obtained

with the modified volume fractions. Finally M
!

m;S is given by the
relationship M

!
m;S ¼ ð1� a2Þ �M

!
0
m;S. The process of calculating

M
!

m;S is shown in Fig. 3b.
4.6. The volume fraction of each phase

In the MCBA–SIMPLE algorithm with n phases, ðn� 1Þ continu-
ity equations are employed to calculate the volume fraction fields
of the corresponding phases, and the volume fraction field of the
remaining phase is obtained using the geometric conservation
equation

P
ai ¼ 1. For these continuity equations, they are consid-

ered as common partial differential equations and are solved using
the common method, i.e., the partial differential equation is dis-
cretized into the set of linear equations and solved. The common
method is also the solution method of momentum equations and
pressure correction equations. However, in the proposed model,
the presence of large-length-scale interfaces requires the interfaces
to be sharp between phase 1 and phase 2. The common solution for
partial differential equations produces serious numerical diffusion
in the grids near interface, resulting in the incapability of making
sharp interface and accurately locating interface. Thus, a special
method for the continuity equation indicating interface should be
suggested to evaluate the interfaces between phase 1 and phase 2.
Fig. 3. The calculation of M
!

m ,
Without losing generality, the volume fraction of phase 2, a2, is
selected to indicate the interface. In the proposed model, a2 should
meet two points. One is that its value should represent the volume
fraction occupied by the fluid of phase 2 in a grid. The other is that
it should have as less numerical diffusion as possible. In the inter-
face tracking methods reported, only the VOF method can satisfy
the two requirements. In the VOF method, the interface tracking
is based on the color function, which marks the fluids in the follow-
ing way (Puckett et al., 1997)

f ¼
0; if place is occupied by the fluid of phase 1
1; if place is occupied by the fluid of phase 2

�

The color function f is evaluated in a discrete grid as a volume
average

a ¼ 1
Vgrid

Z
Vgrid

f � dV

where Vgrid is the volume of grid. The interface advection equation,
Eq. (15), is obtained when integrating Eq. (2) over the whole domain
in the grid. It can advect explicitly the volume fraction of phase 2,
a2. A similar result can be obtained when k ¼ 1. The VOF method in-
cludes the interface reconstruction and an advection algorithm.
There are several algorithms with different accuracies and complex-
ities to do this work. Here we employ the VOF/PLIC method. The
concrete description of the VOF/PLIC method can be found in Gue-
yffier et al. (1999).

For the stability of calculation, the volume fraction field of
phase 1 is calculated using the geometric conservation equation,
after obtaining the volume fraction fields of phase 2 and 3.

4.7. The solution procedure

The solution procedure of the proposed model is to follow the
framework of MCBA–SIMPLE. With the supplementary specifica-
tions mentioned in the previous subsections, the proposed model
including M
!

m;L and M
!

m;S.
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can be solved in the modified solution procedure of MCBA–SIMPLE
as follows:

(1) Solve Eq. (20) for the velocity field shared by phase 1 and
phase 2 and solve the momentum equations of Eq. (21) for
the velocity field of phase 3.

(2) Solve the pressure-correction equation, Eq. (18). The equa-
tion is a comprehensive result of global mass conservation
and the special treatment for the proposed model.

(3) Correct velocities and pressure with Eq. (A.10).
(4) Solve Eq. (11) with k ¼ 3 for the volume fraction field of

phase 3. The volume fraction field of phase 2 is obtained
by Eq. (15) with the VOF/PLIC method, and the volume frac-
tion field of phase 1 is obtained by the geometric conserva-
tion equation

P
ai ¼ 1.

(5) Solve other scalar equations.
(6) Return to the first step and repeat until convergence.
(7) Go to the next time step and repeat the above 6 steps.
4.8. The volume addition of LSI phase due to the coalescence

The interactions between LSI phase (phase 2) and SSI phase
(phase 3) include two forms, the breakup from LSI phase to SSI
phase and the coalescence when SSI phase comes into LSI phase.
However, because of the limited knowledge of breakup, this sub-
section only focuses on coalescence.

As mentioned above, Eq. (15) is employed to advect the large-
length-scale interface and a2 is used to indicate the location of
the interface. The movement of the interface is determined by U

!
2

(U
!

mÞ. In the process of coalescence, the volume of LSI phase can
grow up because some portion of SSI phase comes into LSI phase.
Thus, the effect of volume addition can be formulated by modifying
the original value of U

!
m. Then the relationship U

!
0
m ¼ U

!
m þ U

!
Add is

built, where U
!
0
m denotes the modified field of U

!
m and U

!
Add is the

additional velocity field due to the SSI phase flowing into the LSI
phase.

In the VOF/PLIC method, the operator split advection algorithm
is used, in which one calculation step is performed for one spatial
direction. Likewise, it is appropriate to illustrate the expression of
U
!

Add in only one direction. Take the x-direction as an example, as
shown in Fig. 4. Um and U3 represent the interface velocity and
the velocity of phase SSI phase near the interface, respectively. Dt
is the fractional time step. It is assumed that the velocities men-
tioned above are kept constant in the time step Dt and that the
cross-sectional area is set as 1. Without losing generality, at the ini-
tial time the interface is on the left edge of the grid. In the time
step, the volume of phase 1 flowing into the grid is UmDt. If the
velocity of phase 3, U3, is greater than Um, the fluid of phase 3
can catch up with the interface and come into the fluid of phase
2. Then the volume of phase 3 flowing to phase 2 is calculated as
a3ðU3 � UmÞDt in the time step, which is the addition of the volume
Fig. 4. The advection of large-length-scale interface wh
of phase 2 in the grid. Then the volume of phase 1 in the grid be-
comes ½UmDt � a3ðU3 � UmÞDt�. After rearranging, the correspond-
ing modified velocity of the interface is ½Um � a3ðU3 � UmÞ�. Then
the expression of the additional velocity is ½�a3ðU3 � UmÞ�. The
similar results can be achieved in other two directions.

Considering all the conditions when some portion of SSI phase
can come into LSI phase, the following expression of the additional
velocity, U

!
Add, is given by

U
!

Add;s ¼
�a3 max½ðU

!
3 � U

!
mÞs; 0�; if @a2

@s > 0

�a3 min½ðU
!

3 � U
!

mÞs;0�; if @a2
@s < 0

8<
: ð22Þ

where s stands for x-, y- or z-direction, the three directions in space,
respectively. U

!
Add;s corresponds to the component of U

!
Add in one of

the three directions.
5. Results and discussion

The performance of the proposed model is assessed in this sec-
tion by applying it to four gas–liquid two-phase flow problems.
The first problem is to simulate the movement and deformation
of a single gas bubble in liquid with various dimensionless num-
bers. The second problem deals with the upward laminar dilute
bubbly flow in a vertical pipe. The two problems are aimed at
the two extreme cases of the proposed model, the case of equiva-
lence to the model based on interface tracking method and that of
only using the two-fluid model. In the third problem a rising large
gas bubble is followed by bubbly flow in a vertical pipe. Reversely,
in the last problem bubbly flow is followed by a rising large gas
bubble, where the volume change of the large bubble since some
small bubbles coming into the large bubble must be taken into
account.
5.1. The movement and deformation of a single gas bubble in stagnant
viscous liquid

In this problem, the movement and deformation of a single gas
bubble in stagnant viscous liquid are simulated. The simulations
are performed with several groups of dimensionless numbers,
which represents the relative dominance of various physical prop-
erties. The calculated results are compared with previous experi-
mental results and the bubble diagram of Grace (1973).

The typical model used to solve the problem is based on inter-
face tracking method, such as VOF or Level set, because attention is
paid to the shape of bubble. Thus, the length scale of the interface
should be much larger than that of grid. For the proposed model,
the absence of SSI phase is absent in this problem. When the vol-
ume fraction of phase 3 is specified as 0, the corresponding redis-
tributed volume fraction, a03, should also be 0, which means that
en some portion of SSI phase flows into LSI phase.



Table 1
Three groups of Morton and Eotvos numbers for simulations of bubbles in different
regimes according to the bubble diagram of Grace.

Case Mo Eo ReG ReC Bubble regime

A 0.001 1.0 1.7 1.6 Spherical
B 0.1 10.0 4.6 4.3 Ellipsoidal
C 1000 100.0 1.5 1.6 Dimpled/ellipsoidal
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a01 ¼ 1. Finally Eq. (17), the overall volume conservation equation,
is reduced to

r � U
!

m ¼ 0

which is the same as the continuity equation in the model based on
interface tracking method. Meanwhile, the momentum equations
shared by phase 1 and phase 2 are equivalent to those in the model
based on interface tracking method, which have been obtained with
the derivation process in Section 4.1. The equivalence ensures that
all the governing equations for the proposed model are the same as
those for the model based on interface tracking method, which will
result in the same results. Surface tension effects are calculated
with the continuum surface force (CSF) model of Brackbill et al.
(1992) and act in the form of source term in momentum equations.
The solution strategy is still MCBA–SIMPLE algorithm, which is re-
duced to the solution used to solve the model based on interface
tracking method in this problem.

A two-dimensional cylindrical coordinate assuming axial sym-
metry about a straight line in the gravitational direction is em-
ployed. A uniform rectangular grid system with the grid size of
0.001 m is used, which is enough to ensure results to be indepen-
dent of grid for this problem. The computational domain of
0.08 m � 0.15 m (0.08 m in radial direction and 0.15 m in axial
direction) is employed. The time step is set as 10�4 s. The single
bubble ascends in the stagnant viscous liquid and finally its shape
and its terminal rise velocity will not change. The total time is set
as 0.3 s, which is long enough to stabilify the movement of the
bubble. At initial time the shape of the bubble is assumed to be a
sphere of a certain diameter, whose center is on the symmetrical
axis. The value of the diameter is determined by the volume of
bubble.

In the following comparisons, the dimensionless numbers of
Morton (Mo), Eotvos (Eo) and Reynolds (Re) are used, which are gi-
ven by

Mo ¼ gl4
1Dq

q2
1
r3

Eo ¼ gDqd2
e

r

Re ¼ q1v1de
l1

where the effective diameter de is defined as the diameter of a
spherical bubble with the same volume as the bubble under consid-
eration. In this problem, the effective diameter is equal to the diam-
eter of bubble at initial time. In the Reynolds number v1 represents
the terminal rise velocity of the bubble.

Previous experimental results are employed for comparisons
with the calculated results. Fig. 5 shows the comparisons for three
cases: (a) Eo ¼ 116; Mo ¼ 5:5 presented by Bhaga and Weber
(1981); (b) Eo ¼ 39; Mo ¼ 6:5� 10�2 presented by Hnat and Buck-
master (1976); and (c) Eo ¼ 73; Mo ¼ 6:5� 10�2 by Hnat and
Buckmaster (1976). The calculated shapes and velocity fields are
Fig. 5. Comparisons of the calculated
shown on the right side and the experimental results on the left
side. As shown in Fig. 5, the calculated bubble shapes agree well
with previous experimental results. The calculated Re values are
close to the values of previous studies. In Fig. 5, the different dis-
play densities of velocity vectors are due to the different bubble
volumes in the three cases. More accurate results have been shown
by Ohta et al. (2005), because the adaptive mesh refinement (AMR)
(Sussman et al., 1999) and the more accurate calculation of surface
tension have been applied. Nevertheless, the calculated results are
enough to demonstrate the equivalence of the proposed model to
the model based on interface tracking method.

According to Grace (1973), the shapes and rise velocities of bub-
bles in stagnant viscous liquids can be condensed into one dia-
gram, provided that an appropriate set of dimensionless numbers
is used. In this diagram, three groups of Morton and Eotvos num-
bers are selected for the simulations of the bubbles in different re-
gimes according to the bubble diagram of Grace, as listed in
Table 1. In this table ReG and ReC represent the bubble Reynolds
number obtained from the bubble diagram and the computed ones,
respectively.

In the simulation, the diameter of the sphere at initial time is set
as 0.012 m. A fixed density and viscosity ratio of 1000 is used. The
density/viscosity of phase 1 equals 1000 times the density/viscos-
ity of phase 2, where the density of phase 1 is set as 1000 kg=m3

and the density of phase 2 as 1 kg=m3. The ratio is believed to mi-
mic gas–liquid system with high density and viscosity ratio. Other
physical parameters are determined by the dimensionless
numbers.

Fig. 6 shows the computed shapes of bubbles for the three
groups of Morton and Eotvos numbers, where the dash dotted line
represents the symmetric axis. It can be seen that the computed
Reynolds numbers and the bubble shapes are in good agreements
with the experimental data from the bubble diagram of Grace.

5.2. Fully developed upward laminar dilute bubbly flow in a vertical
pipe

The problem involves the prediction of radial phase distribution
in upward laminar air-oil flow in a vertical pipe. There are some
experimental and numerical studies on the bubbly flow under lam-
inar condition. Song et al. (2001) has studied the phase distribu-
tions for upward laminar dilute bubbly flows with non-uniform
results with experimental results.



Case A: Spherical      Case B: Ellipsoidal   Case C: Dimpled/Ellipsoidal 

Fig. 6. Computed bubble shapes for the different bubble regimes.
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bubble sizes in a vertical pipe. This problem, in which some exper-
imental data of Song is used, is chosen to show an extreme case as
well, where the proposed model is equivalent to the two-fluid
model.

In general, the two-fluid model is employed for the dispersed
flow such as gas–liquid bubbly flow. In this flow pattern, the bub-
ble swarm consisting of many small bubbles moves in a channel or
a duct. The length scales of the interfaces of these small bubbles
are so small that only the averaged values of physical parameters,
such as volume fraction, pressure, velocity of single phase and so
on are concerned and the movement and deformation of individual
interface is ignored. The length scales of the interfaces usually have
the same order as or smaller than those of calculating grids.

The large-length-scale interface is absent in the problem, i.e.,
the volume fraction of phase 2 is specified as 0, which makes the
proposed model equivalent to the two-fluid model. In this case,
the momentum equations shared by phase 1 and phase 2, are
degenerated to those only for phase 1. Meanwhile, Eq. (17) is re-
duced to

r � ða01U
!

1 þ a03U
!

3Þ ¼ 0

which is the standard form for the original MCBA–SIMPLE algo-
rithm. Here the detailed solution procedures of the coupled model
are implemented for solving the two-fluid model. In the solution
procedures, the step of evaluating the large-length-scale interface
defined by volume fraction of phase 2 is ignored.

Compared to the momentum equation deduced with the
ensemble averaging method, the momentum exchange term of
phase k can be written as (Drew and Passman, 1998)

M
!

k ¼M
!

ki � ski � rak þ ðpki � pÞrak

where the subscript i represents the interface, the term M
!

ki; ski; pki,
represent the corresponding physical variable of phase k at the
interface. Interfacial forces acting on each phase differ only in sign,
hence

M
!

1i ¼ �M
!

3i

For fully developed laminar bubbly flow in vertical pipe, the inter-
facial force term M

!
ki is decomposed into several components:

M
!

ki ¼M
!

Drag
k þM

!
Lift
k þM

!
Wall
k

The contribution of drag force to M
!

ki; MDrag
k is given by Ishii and Zu-

ber (1979)
M
!

Drag
1 ¼ �M

!
Drag
3 ¼ 3

8
CD

a
a3q1jU

!
rjU
!

r

where a is the bubble radius, U
!

r ¼ U
!

3 � U
!

1 is the slip velocity and
CD is the drag coefficient. The drag coefficient could be modified
to account for the bubble concentration effect (Ishii and Zuber,
1979). Then an appropriate drag coefficient is chosen as follows:

CD ¼
24ð1þ 0:1Re0:75Þ

Re

where Re ¼ 2q1 jU
!

r ja
l1

is the particle Reynolds number.
The contribution of lift force, M

!
Lift
k , is written in the following

form (Drew and Lahey, 1979)

M
!

Lift
1 ¼ �M

!
Lift
3 ¼ CLa3q1U

!
r � ðr � U

!
1Þ

where CL is the lift coefficient. Moraga et al. (1999) correlated the
lift coefficient as a function of bubble Reynolds number and local
shear Reynolds number. They also showed that CL may be negative
for large bubbles in high-shear flows. However, in this problem, CL

is chosen as 0.1, which was also recommended by Lopez de Bertod-
ano (1992) for bubbly flows in vertical pipes.

The contribution of wall force, M
!

Wall
k , arises from the fact that

the relative velocity between bubble and wall is lower than that
between bubble and the outer flow, which results in the pressure
difference driving bubble away from the wall. It can be written
as (Tomiyama et al., 1997)

M
!

Wall
1 ¼ �M

!
Wall
3 ¼ CWa3q1j~nz � U

!
rj2

4aRr

ðR2 � r2Þ2
~nr

where R is the radius of pipe,~nz is the unit vector in the axial direc-
tion,~nr is the outward unit vector perpendicular to the wall and CW

is the wall coefficient. CW is related to dimensionless numbers of
We, Eo, Mo and Ca, which are used to describe the formation of bub-
ble. In this problem, CW is specified to be 0.08.

Lamb (1932) considered the potential flow around single sphere
and the interfacial pressure difference is obtained

p1i � p1 ¼ �Cpð1� a3Þq1jU
!

r j2

where Cp is the pressure difference coefficient. In view of small gas
density, the pressure difference induced by Bernoulli effect is negli-
gible, i.e., p2i � p2 ¼ 0. Cp was given by Xu (2004) as

Cp ¼
1
4
þ 16ffiffiffiffiffiffiffiffiffiffiffi

pRe3
p



Table 2
Flow parameters for two experimental conditions.

Condition a (mm) Re USL ðm=sÞ USG (m/s)

Condition 1 1.4 5.74 0.08 0.003
Condition 2 1.35 5.32 0.13 0.003

Fig. 8. The schematic diagram of computational domain at initial time in
Section 5.3.

K. Yan, D. Che / International Journal of Multiphase Flow 36 (2010) 333–348 343
Considering the analysis of the forces acting on interfaces (Antal
et al., 1991), the relationship s1i ¼ s3i is obtained. The additional
stress, sRe

1 , is added to the molecule viscous stress in presence of
small bubbles. The expression of sRe

1 was given by Nigmatulin
(1979) and Sato et al. (1981).

sRe
1 ¼ �q1a3

3
20
jU
!

r j2I þ 1
20

U
!

rU
!

r

� �
þ 0:6a3Rel1ðrU

!
1 þrU

!
T
1Þ

Two experimental conditions are selected for simulation using the
above treatments. In the experiments, the working fluids are air
and 25# transformer oil. The inner diameter of the pipe is 29 mm,
while the densities of the working fluids are 1:2 kg=m3 for air and
866 kg=m3 for 25# transformer oil, respectively. The viscosity of
the oil is 0.0316 Pa s. The working temperature is 20 �C. Other
parameters of the two conditions are shown in Table 2.

The uniform grid system with the grid number of 29 in radial
direction is employed, which is high enough to gain the grid inde-
pendent results. Numerically predicted radial profiles of the void
fraction (the volume fraction of phase 3) are presented in Fig. 7.
The locations of the peaks and the distributions of the void frac-
tions are in good agreements with the measurements. It has been
shown that the gas is taken away from the pipe center due to the
lift force, while the gas near wall is driven away to outer flow due
to the wall force. Therefore the void fraction peak occurs in radial
direction. Due to the lack of comprehensive knowledge of these
coefficients in these empirical correlations, there are still differ-
ences in the distribution of local void fraction between numerical
results and experimental data. Nevertheless, the characteristics of
the proposed model have been demonstrated.

5.3. A rising large gas bubble followed by bubbly flow in a vertical pipe

In this problem, a rising gas bubble with large-length-scale
interface followed by a swarm of small bubbles is simulated,
including the interactions between them. In the second problem,
only the interactions of the liquid phase and the SSI phase are sim-
ulated, whereas the LSI phase is of no consideration. However, in
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Fig. 7. Void fraction profiles for fully developed u
this subsection the LSI phase is taken into account. This problem
is a typical example that can adequately show the advantages of
the proposed model.

A two-dimensional coordinate system assuming axial symme-
try about the centerline of the pipe is used. The radius of the pipe
is 14 mm, and the pipe length is 150 mm. A uniform rectangular
grid system of 14� 150 is used. The schematic diagram of the
problem at initial time and the computational domain is shown
as Fig. 8. The initial shape of the large bubble is a hemisphere with
a radius of 9 mm. The shape is simulated and finally a steady
bubble shape is attained. The initial distance from the hemisphere
bottom to the bottom of the computational domain, is 35 mm.
Small bubbles of bubbly flow are injected into the pipe from the
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Fig. 9. The shape of the large bubble and volume fraction field of phase 3 at
different values of L at time 0.3 s: (a) 1, (b) 25 mm, (c) 18 mm, (d) 15 mm, (e)
10 mm.

Fig. 10. The velocity field of liquid phase near the large bubble with L = 10 mm at
time 0.3 s.

Fig. 11. The schematic diagram of computational domain at initial time in
Section 5.4.
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bottom of computational domain. At initial time there is a domain,
downstream of the large bubble, filled with small bubbles. The
computed volume fraction profile under experimental condition
1 shown in Section 5.2 is chosen as the initial profile in the domain
filled with small bubbles as well as at the inlet of the computa-
tional domain. The initial velocity profile of each phase in cross
sections is set as the corresponding computed profile under exper-
imental condition 1. The top of the computational domain is set as
outlet, the left side is set as the centerline of the pipe, i.e., the sym-
metric axis of pipe, and the right side as the wall of the pipe.

The properties of the liquid and the gas, such as density and vis-
cosity, are the same as those in Section 5.2. The surface tension is
0.0465 N/m.

In general the movement and deformation of the interface of
the large bubble is simulated with the VOF method and the move-
ment of single fluid or bubbly flow is calculated with the two-fluid
model. The two cases are included in the proposed model. The
implementation of the proposed model can satisfy both of the
two cases in a unified framework. The total simulation time is
0.3 s, which is enough to show the stable shape of the large bubble
and the behaviour of the interactions of the large bubble and the
following small bubble swarms.

Define the variable L as the distance from the bottom of the
hemisphere shaped large bubble to the top of the domain filled
with bubbly flow at initial time, as shown in Fig. 8. Five cases of
L ¼ 1, 25 mm, 18 mm, 15 mm and 10 mm are simulated as shown
in Fig. 9. The denotation1means the absence of large bubble. The
result in the case of ‘‘1” is the benchmark with which the other
four cases are compared to study the interactions of the large bub-
ble and swarm of small bubbles.

Fig. 10 shows the velocity field near the large bubble when
L = 10 mm. When the large bubble is rising, the liquid near the
bubble head is pushed forward and away from the centerline and
starts to fall around the large bubble. Then the liquid plunges into
the wake zone of the large bubble, and a recirculation zone in the
wake of the large bubble is clearly seen. The velocity field near the
large bubble in the other cases are almost the same as that in the
case of L = 10 mm. In Fig. 9, darker colour represents the domain
with higher volume fraction of small bubbles. It can be seen from
Fig. 9 that with decreased L, i.e., the large bubble are closer to small
bubbles at initial time, more small bubbles are cycloned into the
tail of the large bubble. Compared to the cases of L ¼ 1 and
L = 25 mm, it is observed that the movement and phase profiles
of small bubbles in the two cases are almost the same. However,
there are more or less some small bubbles cycloned by the
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recirculation in the wake of the large bubble in the other cases.
Thus, it is concluded that there is a threshold value of L, which
determines the interactions between large bubble and swarm of
small bubbles. The interactions become more obvious with de-
creased L, once it is small than the threshold value. From the five
cases of Fig. 9, it is can also be seen that the swarm of small bub-
bles has almost no effect on the movement and deformation of the
large bubble. These conclusions are very similar to those of Talvy
et al. (2000), though they studied the interactions between the
leading bubble and the trailing bubble in the slug flow in a vertical
tube.

5.4. Bubbly flow followed by a rising large gas bubble in a vertical pipe

As the final test for the proposed model, a swarm of small bub-
bles followed by a rising gas bubble with large-length-scale inter-
face are considered. This problem concerns is the effect of the
volume addition of the large gas bubble when some small bubbles
enters the large gas bubble. The interactions between the large
bubble and the small bubbles as well as the mass exchange be-
tween them are simulated.

A two-dimensional coordinate system assuming axial symme-
try about the centerline of the pipe is employed. The radius of
the pipe is 14 mm the grid sizes in x- and y-directions are equal
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Fig. 12. (a) Comparison of the computed shapes of the large gas bubble at different time
gas bubble at different values of a at the same time step.
and specified as 0.001 mm. The initial shape of the large gas bubble
is a hemisphere with a radius of 9 mm. The initial shape has no ef-
fect on the computed results. There is a zone, which is upstream of
the large bubble, is filled with the swarm of small bubbles with
uniform volume fraction at initial time, as shown in Fig. 11. The
other zone is occupied by liquid. Note that only the drag force be-
tween the small bubbles and the surrounding liquid is considered
and other interactions such as lift force and wall force are ignored
for simplicity. The initial velocity profile of phase 1 and phase 3 in
cross sections is set as the corresponding computed profiles under
experimental condition 1 in the Section 5.2. The total simulation
time is 1.5 s, which is long enough to show the interactions be-
tween the large bubble and the following small bubbles and the
mass exchange between them. The pipe should be long enough
to satisfy the movement of the large bubble and the small bubbles
during the time span of 1.5 s.

In this problem, the density of fluid is 866 kg=m3 and the den-
sity of gas is 1:0 kg=m3. The viscosity of fluid is 0.06 Pa s. The sur-
face tension is 0.12 N/m.

The large gas bubble rises along the centerline of the pipe. Final-
ly a steady bubble shape will be formed. A recirculation zone in the
wake of the large gas bubble is developed. The small bubbles and
the liquid near the large gas bubble are pushed to the pipe wall
and then plunge into the wake of the large bubble. Part of the small
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bubbles rush directly into the wake zone behind the recirculation
zone. The other small bubbles return to the large gas bubble due
to recirculation and coalesce with it.

Denote a as the volume fraction of phase 3 in the small bubble
domain at initial time. Liu and Bankoff (1993) have investigated
the air–water bubbly flow pattern in a vertical pipe, and found that
the volume fraction is below 0.35. Many dispersed bubbles will
coalesce into large bubbles when the volume fraction is above
0.35, i.e., the flow pattern is changed. Thus, a ¼ 0, 0.1, 0.2 and 0.3
are selected for simulation the case of a ¼ 0 is regarded as the
benchmark since there is no mass exchange between the small
bubbles and the large gas bubble.

In actual situation, the coalescences among small bubbles indi-
cated by phase 3 may happen when the value of a is very high. This
kind of coalescences can generate the bubbles with interfaces of
larger length scale. The larger bubbles can be classified as phase
2. However, this kind of coalescences among phase 3 are out of
consideration in this test. Although many attempts have been
made, it is still a difficult work to describe the transition of the
phase 3 to phase 2 through numerical techniques when this kind
of coalescences happen. Moreover, how the criterion on the transi-
tion of the phase 3 with large volume fraction to phase 2 is deter-
mined needs further study.
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The shapes of the large gas bubble with different values of a at
different time steps are shown in Fig. 12. In Fig. 12a, the shapes of
the large gas bubble at t = 0.5 s, 1.0 s and 1.5 s with the same value
of a are shown. Take the case of a ¼ 0:2 as an example. With time
processing, the volume of the large gas bubble becomes larger as
some small bubbles are furled in to the recirculation zone and en-
ter the large gas bubble. For the case of a ¼ 0, the volumes of the
large gas bubble at three different time steps are kept unchanged
and the shapes are almost the same, since no small bubble coa-
lesces into the large gas bubble. In Fig. 12b, the shapes of the large
gas bubble at a ¼ 0, 0.1, 0.2 and 0.3 at the same time step are
shown. It can be seen that with the increased value of a the larger
volume of the large gas bubble is attained at the same time step,
since more small bubbles enter the large gas bubble.

It is noted that for the last two tests the two test configurations
are hard to realize in experiment. In fact, the flows with both large-
length-scale interfaces and small-length-scale interfaces are very
common in experiment and many experimental data have been
obtained. However, most of these flows contain various coales-
cences and breakups that are too complex and beyond the present
capability of simulation. In spite of no experimental data for com-
parison, the merits of the proposed model have still been shown in
the last two tests.
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6. Conclusion

In this paper, a new model for multiphase flow coupling two ba-
sic models, the model based on interface tracking method and the
two-fluid model, has been proposed and used for the simulation of
incompressible gas–liquid two-phase flow. The proposed model is
characterized by the capability of simulating the gas–liquid two-
phase flow with complex flow patterns, for example, the flow in
which both large-length-scale interface and small-length-scale
interface coexist.

The proposed model possesses all the characteristics of the two
basic models and can be reduced to either of the two models. The
transition between the two basic models is a ‘‘natural” process in
the unified solution framework. One weakness of this model is that
the conservation of phase 1 and 3 cannot be guaranteed in the zone
where all three phases coexist, which is the cost of considering the
particularity of phase 2. However, it has a negligible influence on
the final calculation results.

Four problems are provided to show the main merits of the pro-
posed model. The first two problems show the equivalence of the
proposed model to the two basic models, which are the two ex-
treme cases of the proposed model. The last two ones show the
capability of simulating the flow containing both large-length-
scale interfaces and small-length-scale interfaces, which is closer
to real flow conditions, along with the interactions between them.

In the proposed model, flows are divided into three phases, i.e.,
the liquid phase, the large-length-scale-interface phase (LSI phase)
and the small-length-scale-interface phase (SSI phase). The divi-
sion considering length scale of interface becomes the basis of
implementing the proposed model. Building the unified solution
framework shared by the two basic models is a critical work for
the new model, because it makes sure that the two basic models
are solved with the same algorithm. The special treatment of ‘‘vol-
ume fraction redistribution” is implemented through the deriva-
tion of the proposed model. The treatment deals with the
connection between the two basic models within the unified solu-
tion framework. The volume addition due to some portion of SSI
phase coalescing into LSI phase is also considered with another
special treatment. Since the volume fraction of the LSI phase is re-
quired to be capable of not only keeping its physical meaning but
also indicating the location of the large-length-scale interface, the
VOF method is selected to advect the large-length-scale interface.
Based on the unified solution framework, the modified MCBA–SIM-
PLE algorithm is employed to solve the governing equations, where
the pressure-correction equations are derived not by continuity
equation of single phase but by the modified global mass conserva-
tion equation of all phases. One of the merits of the MCBA–SIMPLE
algorithm, i.e., it can extend many other techniques developed for
single-fluid flow to multiphase flow, is also implanted in the pro-
posed model. The merit and the solution framework of the
MCBA–SIMPLE algorithm guarantee the proposed model to be an
open system and to be adapted to other complex situations met
in engineering.
Acknowledgement

The financial support from Natural Science Fund of China
(10372077) is gratefully acknowledged.
Appendix A

The MCBA–SIMPLE algorithm (Darwish et al., 2001) is an exten-
sion of the single-phase SIMPLE algorithm to multi-phase flows. In
the algorithm, in order to derive the pressure-correction equation,
the mass conservation equations of various phases are added to
yield the global mass conservation equation given by

X
k

ðakqkÞ � ðakqkÞ
old

dt
dV þ DðakqkU

!
k � S
!
Þ

( )
¼ 0 ðA:1Þ

where the subscript ‘‘k” means the phase of k and the D operator
represents the operation

DðHÞ ¼
X
f¼NB

Hf ðA:2Þ

and S
!

are the surface vector at cell face.
The SIMPLE algorithm consists of two stages, the predictor stage

and the corrector stage. In the predictor stage, with solving the
momentum equations, the resulting velocity field, denoted by U

!
�
k,

now satisfies the momentum equations. However, it will not, in
general, satisfy the mass conservation equations. Thus, the correc-
tor stage is needed in order to yield the velocity and pressure fields
satisfying both momentum equations and mass conservation equa-
tions. With denoting the corrections for pressure and velocity fields
by p0 and U

!
0
k, respectively, the two corrected fields are given by

p ¼ po þ p0; U
!

k ¼ U
!
�
k þ U

!
0
k ðA:3Þ

where the superscript ‘‘o” refers to the values of the previous itera-
tion or the guessed ones.

In the predictor stage, the fields of U
!
�
k and po satisfy the momen-

tum equations given by

AkU
!

k

� ¼
X
NB

Ak;NBU
!
�
k;NB þ B

!
k � akdVrpo ðA:4Þ

where B
!

k means body force vector per unit volume of fluid k.
The above equation can be rewritten as

U
!
�
k ¼

P
NBAk;NBU

!
�
k;NB þ B

!
k

Ak
� akDkrpo ðA:5Þ

where Dk ¼ dV
Ak

.
While the final solutions can be written, in the form of the

above equation, as

U
!

k
¼

P
NBAk;NB U

!

k;NB
þB
!

k

Ak
� akDkrp ðA:6Þ

By subtracting the above two sets of equations from each other, the
following equation involving the corrected terms is given by

U
!
0
k ¼

P
NBAk;NBU

!
0
k;NB

Ak
� akDkrp0 ðA:7Þ

Neglecting the correction to neighboring cells, the above equation
reduces to

U
!
0
k ¼ �akDkrp0 ðA:8Þ

Moreover, the corrected velocity fields will satisfy the global mass
conservation equation. Substituting Eq. (A.7) and U

!
k ¼ U

!
�
k þ U

!
0
k into

Eq. (A.1) and rearranging give the pressure correction equation
shown as

X
k

DðakqkakDkrp0 � S
!
Þ

� �

¼
X

k

ðakqkÞ � ðakqkÞ
old

dt
dV þ DðakqkU

!
�
k � S
!
Þ

( )
ðA:9Þ

The correction to pressure field p0 is achieved when solving the set
of pressure correction equations. Then the correction is applied to
pressure and velocity fields using the following equations:
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pnew ¼ po þ p0; U
!

new
k ¼ U

!
�
k � akDkrp0 ðA:10Þ

where the superscript ‘‘new” refers to the initial values of the next
iteration.

Numerical experiments using the above approach to simulate
air–water-like flows have shown poor conservation of the lighter
fluid (Darwish et al., 2001). In the air–water-like flows, a high den-
sity difference between weightier fluid and lighter fluid is present,
which makes the contribution of weightier fluid to global mass
conservation equation much larger than that of lighter fluid. The
pressure correction will, to a great extent, tend to drive the weight-
ier fluid to conservation, while the lighter fluid can be neglected.
The problem can be considerably alleviated by normalizing the
individual mass conservation equations, and hence the global mass
conservation equation, by means of a weighting factor such as a
reference density qk (Darwish et al., 2001). Therefore, the pressure
correction equation can be modified as follows:

X
k

DðakqkakDkrp0 � S
!
Þ

qk

8<
:

9=
;

¼
X

k

ðakqkÞ � ðakqkÞ
old

dt � qk
dV þ DðakqkU

!
�
k � S
!
Þ

qk

8<
:

9=
;

which can be rearranged and given by

X
k

fDðakakDkrp0 � S
!
Þg ¼

X
k

ak � aold
k

dt
dV þ DðakU

!
�
k � S
!
Þ

� �
ðA:11Þ

Here the assumption of incompressibility of fluids is used.
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